Значимость нечетких описаний при принятии финансовых решений 2



 мы можем в пределах одной модели формализовывать как особенности экономического объекта, так и познавательные особенности связанных с этим объектом субъектов менеджера и аналитика, порождая экспертную модель в структуре обобщенной финансовой модели хозяйствующего субъекта. Таким образом возникает платформа для интеграции принципиально разнородных знаний в рамках одной количественной финансовой модели;
 мы можем вернуть вероятностные описания в свой научный обиход, как вероятностные распределения с нечеткими параметрами. Нечеткость параметров распределения обусловлена тем, что классически понимаемой статистической выборки наблюдений нет, и для анализа мы пользуемся научной категорией квазистатистики. При таком подходе треугольные параметры распределения устанавливаются на основе процедуры установления степени правдоподобия. Таким образом, наметился путь для синтеза вероятностных и нечетко-множественных описаний. Без вероятностных распределений не обойтись там, где речь идет о моделировании случайных процессов (например, в фондовом менеджменте);
 мы можем получить принципиально новый класс методов комплексного финансового анализа, основанных на увязывании ряда отдельных финансовых показателей в единый комплексный показатель финансового состояния хозяйствующего субъекта. Мы можем при этом отказаться от идеи Альтманадля оценки риска банкротства (как от специфически-частного метода, который не в состоянии учитывать всю необходимую специфику финансового состояния каждого отдельного хозяйствующего субъекта),
равно как и от ряда аналогичных методов (Тоффлера-Тисшоу [150], Лиса,
Чессера, Давыдовой-Беликова [23] и др.), при этом формируя перечень участвующих в оценке отдельных финансовых факторов и их весов самостоятельно, с учетом фактической специфики анализируемого хозяйствующего субъекта;
 мы можем отказаться от сценарного моделирования при инвестиционном проектировании, предполагая, что все возможные сценарии развития событий, отражающиеся во входных параметрах финансовой модели (уровень затрат, выручки, фактора дисконтирования и т.д.) учтены в соответствующих треугольно.нечетких оценках, а веса вхождения соответствующего сценария в полную группу характеризуются функцией принадлежности соответствующего треугольного числа;
 мы можем воспользоваться матричной схемой для оценки комплексного финансового состояния хозяйствующего субъекта для построения методов оценки качественногоуровня ценных бумаг . рейтинга облигаций и скоринга акций;
 мы можем вернуться к продуктивной идее Гарри Марковица для оптимизации фондового портфеля по схеме MVA (mean-variance analysis),
записав задачу портфельной оптимизации в нечеткой постановке.
Результатом решения этой задачи яявляется эффективная граница портфельного множества в форме криволинейной полосы и оптимальный портфель с нечеткими границами, построенный для предельно допустимого уровня риска портфеля;



  
Содержание раздела