Системы, полученные генетическими методами





Мы разрабатываем множество систем с использованием генетических алгоритмов. Популярной функцией пригодности системы (степени достижения желаемого результата) является общая прибыль системы. Но при этом общая прибыль не является лучшим из критериев качества системы! Система, которая использует только крупные обвалы рынка S&P 500, например, даст очень высокую общую прибыль и очень высокий процент прибыльных сделок, но кто может с уверенностью утверждать, что такая система полезна в практической торговле? Если система провела всего 2 — 3 сделки за 10 лет, чисто интуитивно нельзя ожидать ее стабильной работы в будущем или быть уверенным, что система вообще сможет совершать сделки. Частично проблема в том, что общая прибыль никак не учитывает количество сделок и их изменчивость.
Альтернативными показателями пригодности, лишенными некоторых недостатков общей прибыли, являются t- критерий и связанная с ним вероятность. При использовании t- критерия как функции пригодности (вместо простого поиска наиболее выгодного решения) смысл генетического развития систем состоит в создании систем с максимальной вероятностью прибылей в будущем или, что то же самое, с минимальной вероятностью прибылей, обусловленных случайностью или подгонкой под исторические данные. Этот подход работает весьма хорошо; t- критерий учитывает прибыль, размер выборки данных и количество совершенных сделок. Хотя все факторы важны, все же, чем больше сделок совершает система, тем выше t- показатель и больше вероятность устойчивости в будущем. Таким же образом, системы, которые дают более стабильные сделки с минимальным разбросом, будут иметь лучший t- показатель и предпочтительнее систем, где разброс сделок велик. T- критерий включает в себя многие из параметров, определяющих качество торговой модели, и сводит их в одно число, для оптимизации которого можно применить генетический алгоритм.

Содержание раздела