Тест 2. Система на основе пробоя канала. Используются только цены закрытия; вход по рыночной цене при открытии биржи на следующий день, комиссия и проскальзывание учитываются.
Этот тест проведен точно так же, как и предыдущий, за исключением учета проскальзывания (3 тика) и комиссионных ($15 за цикл сделки). Хотя эта модель работала успешно без учета расходов на сделки, на практике она с треском провалилась. Даже лучшее в выборке решение принесло только убытки, и, как и следовало ожидать, вне пределов выборки система также работала с убытком. Почему же относительно небольшие комиссионные и проскальзывание приводят к разрушению производительности системы, которая без них зарабатывает тысячи долларов на средней прибыльной сделке? Потому что на многих рынках сделки включают множественные контракты, а комиссионные и проскальзывания влияют на каждый контракт по отдельности. В данном случае опять именно длинные сделки приносили наибольшую прибыль. Модель была умеренно доходной в 1980х годах, но потом стала убыточной. Учитывая прибыльные результаты прошлого теста, можно предположить, что модель постепенно перестала окупать расходы на совершение сделок. Когда простые компьютеризованные системы пробоев вошли в моду в конце 1980- х годов, возможно, именно они с течением времени изменили природу рынков, что привело к падению эффективности данных систем.
В табл. 5- 1 приведены результаты портфеля для системы, основанной на пробое канала. Результаты распределены по разным рынкам для различных выборок данных (названия рынков и их символы соответствуют обозначениям табл. II- 1; часть II, введение): ПРИБДЛ — общая прибыль длинных позиций в тысячах долларов; ПРИБКР— общая прибыль коротких позиций в тысячах долларов; ДОХ% — прибыль в процентах годовых; ВЕР — статистическая достоверность; $СДЕЛ — средняя прибыль/убыток в сделке.
Методы следования за трендом, такие как системы пробоев, предположительно хорошо работают на валютных рынках. Данный тест подтверждает это предположение: положительная прибыль на нескольких рынках валют была получена и в пределах выборки данных, и вне ее. На многих рынках (нефть и нефтепродукты, кофе, лес) также отмечена положительная прибыль. Прибыльное поведение индексов (S&P 500 и NYFE), видимо, обусловлено сильным бычьим рынком 1990- х годов. На каждом рынке в год проводилось около 10 сделок. Процент прибыльных сделок был подобен наблюдавшемуся в первом тесте (около 40%).
Тест 3. Система на основе пробоя цены закрытия, вход по лимитному приказу на следующий день, расходы на сделки учитываются.
Для улучшения эффективности модели путем контроля над проскальзыванием и получения входов по более выгодной цене мы использовали лимитный приказ для входа на следующий день по указанной или более выгодной цене. Полагая, что рынок скорректирует по крайней мере половину ценового диапазона дня, в который был произведен пробой (cb), перед тем как продолжить дальнейшее движение, мы размещаем лимитный приказ (limprice) на уровне середины этого диапазона. Поскольку большая часть кода остается неизменной, приведем только наиболее сильно изменившиеся участки:
// file = x09mod03.c
// пробой канала на основе только цен закрытия с входом на следующий день,
// используя лимитный приказ limprice = 0.5 * (hi[cb] + lo [cb]);
if (cls[cb]>Highest(cls,n,cb- l) && ts.position{)<=0) {ts.buylimit('1' , limprice, ncontracts);
)
else if (cls[cb]<Lowest(cls,n,cb- l) && ts.position{)>=0) {ts.selllimit('2', limprice, ncontracts);
)
// симулятор использует стандартную стратегию выхода atr = AvgTrueRange{hi, lo, cls, 50, cb} ;
ts.stdexitcls ('X', ptlim*atr, mmstp*atr, maxhold);
Вход производится по лимитному приказу в пределах бара. Если бы использовались целевая прибыль и защитная остановка в пределах бара, то возникли бы проблемы. Помещение многих приказов внутри одного бара может сделать моделирование недостоверным: последовательность выполнения этих приказов невозможно отследить по данным на конец дня, а повлиять на результат они могут серьезно. Поэтому стандартный выход основан на приказах, использующих только цены закрытия.
Как и ранее, параметр n (количество дней для усреднения) оптимизировался от 5 до 100 с шагом 5, и выбиралось лучшее решение по соотношению риска/прибыли (и t- вероятности). Комиссионные, проскальзывание, параметры выхода и возможность снова войти в продолжающийся тренд, хотя и с запаздыванием, остались неизменными.
При оптимальном n = 80 (как и тесте 1) эта модель давала около 33% прибыли в год в пределах выборки. Вероятность случайности этих показателей была 5% без коррекции и 61% после коррекции на 21 тесте оптимизации. Хотя в пределах выборки система была выгодной, статистические данные показывают, что в будущем возможен провал; в самом деле, на данных вне пределов выборки система была убыточной. Как и в тестах 1 и 2, сделки длившиеся 7 и более баров, были прибыльнее, чем короткие. Процент прибыльных сделок составил 42%. Хотя вход с использованием лимитного приказа не снял отрицательного влияния комиссии и проскальзывания, тем не менее эффективность улучшилась. Лимитный приказ не особенно уменьшил количество сделок и не привел к пропуску выгодных трендов; обычно после пробоев рынок возвращался обратно, позволяя входить по более выгодной цене. То, что такая произвольная и, почти наверняка, неоптимальная методика смогла улучшить эффективность системы, весьма обнадеживает. График изменения капитала также показывает, что подобная система когда- то работала хорошо, но теперь бесполезна.
Из табл. 5- 2 видно, что прибыльные результаты были получены на рынке нефти как в пределах, так и вне пределов выборки, что соответствует данным предыдущих тестов. Рынок кофе также был прибыльным в обоих случаях. В пределах выборки фьючерсы на S&P 500 также принесли прибыль.