Вышеприведенные тесты продемонстрировали ряд важных фактов. Во первых, нейронные сети вне пределов выборки продемонстрировали меньшую устойчивость, чем генетически разработанные правила. Это, несомненно, связано с большим числом параметров в нейронной сети по сравнению с моделями на основе правил. Иными словами, нейронные сети страдали от избыточной подгонки под исторические данные. Кроме того, было показано, что добавление сложного сигнала выхода, будь то нейронная сеть или набор правил, полученных с помощью генетической эволюции, может значительно улучшить стратегию выходов. При использовании более устойчивых генетических правил полученные преимущества сохранились и при работе вне пределов выборки.
Нейронная сеть и шаблоны правил были изначально предназначены для работы в системах входов и проявили себя достаточно хорошо при генерации редких сигналов входа. В стратегии выходов были бы предпочтительны правила, генерирующие сигналы значительно чаще. Существует обоснованное мнение, что набор шаблонов правил, специально предназначенный для разработки сигналов выхода, был бы гораздо более эффективен. То же самое относится и к нейронным сетям.