Например, если рассчитанные для пары объектов меры включения имеют следующие значения:
W(S1; S2) = 0,57, W(S2; S1)= 0,67,
то эти результаты можно интерпретировать следующим образом. Мера включения первого описания во второе (0,67) показывает, что второй объект "оригинальнее", или "экзотичнее", первого. Т. e. описание второго объекта содержит больше специфических признаков, чем описание первого объекта, поскольку первое описание включено во второе на 67 %, а второе включено в первое на 57 %.
Отношение иерархии определяется следующим образом.
Если множество H(i) образовано соединением некоторых классов из множества Н(i), то f:
Н(i) ® Н(j) сюръективно: каждому элементу Н(i) соответствует хотя бы один элемент из Н(j).
То обстоятельство, что класс появляется классом более широким, чем Н(j) отображается через отношение иерархии И следующим образом: Н(i) И Н(j) (класс H(i) подчиняет класс H(j)).
Множество H(i) называется сгущением H(j), если хотя бы один из классов H(i) есть соединение классов из H(j).
Если И = {Н(1),..., H(S)} есть множество разбиений, таких, что Н(k) сгущение Н(k-1), где k Î К, К = {k ½ k — целое число, 1 £ k £ S}, то в предельном случае Н(1) состоит из всех классов, содержащих ровно по одному элементу, a H(S) — из одного класса, совпадающего с исходным множеством исследуемых объектов J. При этом если задано разбиение, то элементы, входящие в один и тот же класс, являются неразличимыми (эквивалентными). Здесь под разбиением Н множества J понимается представление J в виде совокупности непустых подмножеств Hk, k = 1, 2,..., п , таких, что
Множество И есть иерархическая система, состоящая из S уровней. Номеру каждого уровня можно поставить в соответствие его ранг, так как К— упорядоченное множество, а названия всех классов одного ранга считать категорией.
При практической реализации иерархических классификаций строятся дендрограммы, являющиеся графическим способом изображения системы, что делает наглядной структуру иерархической системы.
Последовательный процесс построения сгущений начинается с рассмотрения q объектов
q Î H(1)).