Пусть имеется матрица предпочтений стандартов:
Вектор приоритетов стандартов имеет следующий вид:
Н = 0,696 М = 0,225 L = 0,079.
Рассмотрим четыре альтернативы А1,..., А4 которым поставлены в соответствие следующие значения вектора приоритетов стандартов:
А1 = 0,225 (М), А2 = 0,079 (L), А3 = 0,225 (М), А4 =0,079 (L),
Нормированный вектор приоритетов рассматриваемых альтернатив следующий:
А1 А2 А3 А4
W4 = { 0,370 0,130 0,370 0,130 }Т.
где Т — знак транспонирования;
(4) — нижний индекс, указывающий число ранжируемых альтернатив.
В соответствии с приведенным вектором альтернативы ранжируются в порядке убывания приоритета: А1, А3, А2, А4.
Добавим к рассматриваемому множеству альтернатив новую — А5 и присвоим ей значение, соответствующее высокому стандарту — Н. Нормированный вектор приоритетов для пяти альтернатив имеет следующий вид:
А1 А2 А3 А4 A5
W5= {0,137 0,061 0,173 0,061 0,534}T.
В соответствии с этим вектором альтернативы ранжируются в порядке убывания приоритета следующим образом: А5, А1, А3, А2, A4. Анализ приведенной последовательности показывает, что добавление новой альтернативы А5, не привело к нарушению порядка у ранее проанализированных альтернатив А1, ..., А4.