Пример из области экономики




* Вне зависимости от ценности концепций Маха с современной точки зрения, мы должны быть благодарны ему за ту роль, которую его идеи сыграли в создании Эйнштейном специальной теории относительности. Хотя с годами Эйнштейн и стал отвергать методологию Маха это не может подорвать ее репутацию.

Я должен отметить, что эти различные роли почти по случайному стечению обстоятельств действительно тесно связаны. Часто физику удаётся найти лучшее, более экономное описание явлений природы, если он способен сформулировать наблюдаемые законы, используя принцип максимума. Экономист часто может получить лучшее, более экономное описание экономического поведения, используя тот же инструментарий.
Позвольте мне проиллюстрировать это очень простыми примерами. Падение Ньютонова яблока может быть описано двумя способами: оно падает на землю с постоянным ускорением; или его положение как функция времени изменяется вдоль кривой, которая минимизирует (от момента начала падения до момента наблюдения) интеграл функции, представляющей собой квадрат мгновенной скорости минус линейная функция положения. "Как, — скажете вы, — Вы серьёзно считаете, что второе объяснение является простым7" Я не буду с этим спорить, замечу только, что для математически подкованного физика выражение


не более сложно, чем х = -g; и он знает, что формулировка принципа Гамильтона в вариационной форме обладает великими мнемоническими свойствами, когда речь идёт о переходе от одной системы координат к другой.
Хотя я не физик и не думаю, что многие из моих слушателей — физики, позвольте мне привести более наглядный пример полезности принципа максимума в физике. Свет перемещается в воздухе из одной точки в другую по прямой линии. Подобно случаю с падающим яблоком, это перемещение может быть описано в виде решения задачи вариационного исчисления на нахождение минимума.

Но рассмотрим теперь, как свет отражается, попадая на зеркало. Вы можете увидеть и запомнить, что угол падения равен углу отражения. Более наглядным средством, облегчающим понимание этого факта, является принцип наименьшего времени Ферма, который был известен уже Герону и другим учёным Древней Греции.

Приведённый ниже чертёж, на котором указаны равные треугольники, говорит сам за себя (рис. 1).


Если длина отрезка АВС' явно меньше длины ломаной ADC', то очевидно, что путь АВС (равный АВС') короче и занимает меньше времени, чем любой другой путь, например путь ADC.
Вы вправе утверждать, что, хотя представление в виде минимума является удобным, оно ничем не лучше другого. Но пойдите после этой лекции в свою ванную комнату и посмотрите на своё отражение, опустив в воду большой палец ноги. Ваши конечности больше не будут выглядеть прямыми, поскольку скорость распространения света в воде отличается от скорости его распространения в воздухе.

Принцип наименьшего времени даёт вам ключ к описанию поведения света в таких условиях, а знание закона Снелла об углах — нет. Кто теперь может сомневаться относительно того, какое из двух научных объяснений лучше?
Пример из области экономики
Позвольте мне показать то же самое применительно к экономике, взяв в качестве примера простейший случай. Рассмотрим фирму, стремящуюся к максимизации своей прибыли, которая продаёт продукцию в соответствии с кривой спроса, причём цена является невозрастающей функцией продаваемого количества. Предположим далее, что для выпуска продукции необходимо затратить один, два или девяносто девять видов различных ресурсов.

Ради простоты будем считать, что производственная функция, связывающая объёмы затрат и выпуска, является гладкой и вогнутой.
Экономист, мыслящий в стиле Маха, будучи учёным-позитивистом, заинтересованным попросту в регистрации и систематизации наблюдаемых фактов, мог бы в принципе перенести на перфокарты информацию о 99 функциях спроса, связывающих количество каждого ресурса, покупаемого фирмой, с 99 переменными, отражающими цены на ресурсы. Какой, колоссальной задачей было бы хранение массивов информации, определяющих 99 различных поверхностей в стомерном пространстве! Однако на самом деле 99 поверхностей не являются независимыми. В действительности достаточно знать единственную "родительскую" поверхность, для того чтобы иметь возможность получить путём расчётов точную информацию о 99 "детях".



Каким же образом становится возможной такая громадная экономия в описании? Да в силу того факта, что наблюдаемые кривые спроса, которые великий шведский экономист предпоследнего поколения Густав Кассель считал неделимыми атомами в теоретическом арсенале экономиста, в действительности являются решениями задачи максимизации прибыли! При обычных условиях регулярности эти решения представляют собой функции, обратные семейству частных производных функции совокупного дохода, который определяется как произведение объёма продукции (при данных объёмах затрат всех ресурсов) на цену спроса, по которой эта продукция будет продана. При условии гладкости и строгой вогнутости эта "родительская" функция дохода имеет своими "детьми" матрицу частных производных второго порядка размерности 99х99, которая является симметричной и отрицательно определенной.

Легко доказать, что эти функции могут быть однозначно обращены в форму нового семейства "детей" с теми же самыми свойствами. 99 таких "детей" не могут не иметь "родительской" функции, которую, если бы она никогда не существовала, мы должны были бы создать, подобно Пигмалиону. Математически это выглядит так:


где



— гладкая, строго вогнутая "регулярная функция дохода. Необходимыми условиями максимума будут

Если, кроме того, матрица Гесса вторых частных производных является отрицательно определённой,, то уравнений (2) достаточно для максимума. Отсюда вытекают обратные соотношения, которые могут интерпретироваться как частные производные сопряженной функции Хотеллинга-Роя Н., а именно:

Отсюда следует, что при

наши переменные удовлетворяют неравенству

Можно сказать и больше. Хотя мне трудно представить себе характер поверхностей даже в трёхмерном пространстве, я могу уверенно заявить на основе вышесказанного, что повышение цены на любой ресурс при сохранении остальных цен постоянными определённо приведёт к снижению спроса на этот ресурс со стороны фирмы, т.е. дvi / дрi 0. Такой банальный результат мог бы предвидеть любой, кто вникнет в ситуацию и спросит себя' "Предположим, я был бы последним простаком среди предпринимателей. Что я стал бы делать, чтобы сохранить по возможности большую прибыль в случае подорожания одного из ресурсов?
Здесь здравый смысл и высшая математика оказываются в согласии. Однако все мы знаем о парадоксе Гиффена, в соответствии с которым повышение цены на картофель — основную еду бедных ирландских крестьян — может снизить их жизненный уровень настолько, что заставит покупать скорее больше, чем меньше картофеля. В этом случае сам здравый смысл обнаруживается только под прожектором математики.
С помощью математики я могу видеть свойство 99-мерных поверхностей, скрытое от простого глаза. Если повышение цены удобрений (только их одних) всегда приводит к увеличению закупок некоей фирмой чёрной икры, то из одного этого факта я могу предсказать результат следующего эксперимента, который никогда не проводил сам и по которому не располагаю никакими данными наблюдений: повышение цены на одну только икру приведет к росту закупок фирмой удобрений. В термодинамике такие условия взаимности или интегрируемости известны как условия Максвелла.

В экономике они известны как условия Хотеллинга — в честь Гарольда Хотеллинга, сформулировавшего их в 1932 г. (Hotelling, 1932).
Одна из привлекательных сторон научной деятельности состоит в том, что мы все карабкаемся на небеса на плечах своих предшественников. Экономика, подобно физике, имеет своих героев, и букву "Н" я использовал в своих математических уравнениях не в честь сэра Уильяма Гамильтона (Hamilton), а скорее в честь Гарольда Хотеллинга (Hotelhng). Ведь именно его работа столь сильно вдохновляла меня, когда я начинал свою карьеру Примерно в это же время покойный Генри Шульц пытался эконометрическими методами проверить соответствие условии интегрируемости Хотеллинга эмпирическим данным (Schultz, 1938).
Имеются еще и другие предсказуемые условия определенности, касающиеся того, насколько описанные "перекрестные эффекты" должны быть слабыми по сравнению с "собственными эффектами" повышения цен, однако я не буду отнимать у аудитории время на их обсуждение. Упомяну лишь об одном условии: знаки всех главных миноров должны чередоваться.
В качестве последней иллюстрации черной магии, посредством которой формула максимума позволяет получить четкие выводы относительно сложной системы с большим числом переменных, позвольте напомнить о работах, в которых я сформулировал и обобщил принцип, известный в физике как принцип Ле Шателье (Samuelson, 1947, 1958, 1960а). Этот принцип был обнародован почти сто лет тому назад французским физиком, который занимался термодинамикой, развивая в ней направление, связанное с именем Гиббса. Принцип не отличается большой ясностью.

Треть века тому назад, когда я зачитывался различными трактатами по физике, мое математическое ухо не могло различить, какую мелодию в них играют. Если вы сегодня возьмете большинство книг по физике, возможно, вас постигнет та же участь. Обычно в них используются невразумительные телеологические аргументы.

Например, можно прочесть нечто подобное: "Если вы наложите внешнее ограничение на систему, находящуюся в равновесии, то она перейдет в новое состояние равновесия, позволяющее поглотить изменение" (или "противодействовать ему", или "подстроиться под него" или "минимизировать его").

Интересные записи



Содержание раздела