Слепое моделирование


При использовании «слепого моделирования» система оптимизируется с использованием данных временного периода, который намеренно исключает последние годы. Результативность системы затем тестирует­ся с использованием полученных наборов параметров на последующих годах. В идеале, этот процесс следует повторить несколько раз.

Заметьте, что мы избегаем подгонки результатов, поскольку наборы параметров, используемые для измерения результативности в любой дан­ный период, выбираются полностью на основе предшествующих, а не те­кущих данных. В некотором смысле такой подход к тестированию воспро­изводит реальную жизнь (т.е. приходится на основании прошлых данных решать, при каком наборе параметров торговать). Оптимизационные те­сты из предыдущего раздела использовали этот тип процедуры, передви­гаясь во времени по двухгодичным интервалам; в частности, результаты системы для периода 1981-1988 гг. использовались, чтобы выбрать на­боры параметров с наилучшей результативностью, которые потом тести­ровались для периода 1989-1990 гг. Далее результаты системы для пе­риода 1983-1990 гг. использовались при выборе наиболее результативных наборов параметров, которые затем были протестированы для пери­ода 1991-1992 гг. И наконец, результаты системы за период 1985-1992 гг. использовались при выборе наиболее результативных наборов пара­метров, которые затем были протестированы для периода 1993-1994 гг. Важнейший момент состоит в том, чтобы периоды «слепого моде­лирования» и оптимизации не накладывались один на другой. Модели­рование, которое производится на том же периоде, что и оптимизация, не имеет ценности.



Содержание раздела