При использовании «слепого моделирования» система оптимизируется с использованием данных временного периода, который намеренно исключает последние годы. Результативность системы затем тестируется с использованием полученных наборов параметров на последующих годах. В идеале, этот процесс следует повторить несколько раз.
Заметьте, что мы избегаем подгонки результатов, поскольку наборы параметров, используемые для измерения результативности в любой данный период, выбираются полностью на основе предшествующих, а не текущих данных. В некотором смысле такой подход к тестированию воспроизводит реальную жизнь (т.е. приходится на основании прошлых данных решать, при каком наборе параметров торговать). Оптимизационные тесты из предыдущего раздела использовали этот тип процедуры, передвигаясь во времени по двухгодичным интервалам; в частности, результаты системы для периода 1981-1988 гг. использовались, чтобы выбрать наборы параметров с наилучшей результативностью, которые потом тестировались для периода 1989-1990 гг. Далее результаты системы для периода 1983-1990 гг. использовались при выборе наиболее результативных наборов параметров, которые затем были протестированы для периода 1991-1992 гг. И наконец, результаты системы за период 1985-1992 гг. использовались при выборе наиболее результативных наборов параметров, которые затем были протестированы для периода 1993-1994 гг. Важнейший момент состоит в том, чтобы периоды «слепого моделирования» и оптимизации не накладывались один на другой. Моделирование, которое производится на том же периоде, что и оптимизация, не имеет ценности.