Выбор длины отрезка данных.


Большинство методов поиска цик­лов испытывает проблемы, связанные с недостатком или переизбыт­ком данных. Если набор данных слишком мал, то аналитик просто не увидит достаточного количества повторений, чтобы обнаружить на­личие цикла. Как правило, требуется по меньшей мере десять повто­рений цикла (лучше пятнадцать), чтобы статистически подтвердить его наличие. Следовательно, если кто-то ищет 100-дневный цикл, не­обходимо иметь данные за 1000 дней, чтобы его обнаружить. Прак­тический минимум — это примерно 200 точек данных, независимо от длины отыскиваемых циклов, поскольку большинство математичес­ких алгоритмов не смогут правильно работать при меньшем количе­стве данных.

В анализе циклов, однако, больше — не обязательно лучше. Слиш­ком большое количество точек данных (например, более 5000), скорее всего, приведет к многочисленным смешениям фаз, и в результате ста­тистические тесты пропустят некоторые важные циклы. Чаше всего нет необходимости использовать более чем 2000 точек данных и, более того, нежелательно использовать более чем 5000 (водораздел между отсутствием преимуществ и негативным влиянием лежит где-то посере­дине этого отрезка). Основываясь на опыте, можно рекомендовать, что­бы первичный анализ был проведен для 2000 точек данных, а второй, более точный, — примерно для 1000 точек с целью детального нахож­дения временных рамок циклов. Это с очевидностью означает, что в любом случае не следует искать циклы с периодом, большим чем 100 точек данных, поскольку циклы с более длинными периодами будут иметь менее десяти повторений при втором сканировании. Чтобы най­ти циклы с большими периодами, потребуется сжатие данных.



Содержание раздела