Структура KXEN Analytic Framework 3


Компонент Согласованного Кодирования (KXEN Consistent Coder - K2C) позволяет автоматически подготовить данные и трансформировать их в формат, подходящий для использования аналитическими приложениями KXEN. Использование K2C позволяет трансформировать номинальные и порядковые переменные, автоматически заполнять отсутствующие значения и выявлять выбросы.

Преимуществом использования данного компонента является возможность автоматизации подготовки данных, которая позволяет освободить время для непосредственно исследований и моделирования.

Компонент Робастной Регрессии (KXEN Robust Regression - K2R) использует подходящий регрессионный алгоритм для того, чтобы построить модели, описывающие существующие зависимости, и сгенерировать прогнозирующие модели. Эти модели могут затем применяться для скоринга, регрессии и классификации. В отличие от традиционных регрессионных алгоритмов, использование K2R позволяет безопасно справляться с большим количеством переменных (более 10 000). Модуль K2R строит индикаторы и графики, которые позволяют легко убедиться в качестве и надежности построенной модели.

Преимуществом использования данного компонента является автоматизация процесса интеллектуального анализа данных. Модели позволяют детализировать индивидуальные вклады переменных.

Компонент Интеллектуальной Сегментации (KXEN Smart Segmenter - K2S) позволяет выявить естественные группы (кластеры) в наборе данных. Модуль оптимизирован для того, чтобы находить кластеры, которые относятся к конкретной поставленной задаче. Он описывает свойства каждой группы и указывает на ее отличия от всей выборки. Как и в случае с другими модулями, этот модуль также строит индикаторы качества и надежности модели.

Преимуществом использования данного компонента является автоматическое выявление групп, значимых для той конкретной задачи, которую необходимо решить.





Содержание раздела