дает нам совокупное среднее абсолютное





Уравнение (3.06) дает нам совокупное среднее абсолютное отклонение. Вам следует знать, что можно рассчитать среднее абсолютное отклонение по выборке. Для расчета среднего абсолютного отклонения выборки замените 1 / N в уравнении (3.06) на 1 / (N - 1). Используйте эту версию, когда расчеты ведутся не по всей совокупности данных, а по некоторой выборке.
Самыми распространенными величинами для измерения разброса являются дисперсия и стандартное отклонение. Как и в случае со средним абсолютным отклонением, их можно рассчитать для всей совокупности и для выборки. Далее показана версия для всей совокупности данных, которую можно легко переделать в выборочную версию, заменив l/NHal/(N-l). Дисперсия (variance) чем-то напоминает среднее абсолютное отклонение, но при расчете дисперсии каждая разность значения точки данных и среднего значения возводится в квадрат. В результате, нам не надо брать абсолютное значение каждой разности, так как мы автоматически получаем положительный результат, независимо от того, была эта разность отрицательной или положительной. Кроме того, так как в квадрат возводится каждая из этих величин, крайние выпадающие значения оказывают большее влияние на дисперсию, а не на среднее абсолютное отклонение. В математических терминах:



где V = дисперсия;
N = общее число точек данных;
X. = значение, соответствующее точке i;
А = среднее арифметическое значений точек данных.

Стандартное отклонение (standard deviation) тесно связано с дисперсией (и, следовательно, со средним абсолютным отклонением). Стандартное отклонение является квадратным корнем дисперсии.
Третий момент распределения называется асимметрией (skewness), и он описывает асимметричность распределения относительно среднего значения (рисунок 3-2). В то время как первые два момента распределения имеют размерные величины (то есть те же единицы измерения, что и измеряемые параметры), асимметрия определяется таким способом, что получается безразмерной. Это просто число, которое описывает форму распределения.
Положительное значение асимметрии означает, что хвосты больше с положительной стороны распределения, и наоборот. Совершенно симметричное распределение имеет нулевую асимметрию.



Рисунок 3-2 Асимметрия


Содержание раздела