Значимость нечетких описаний при принятии финансовых решений


 

Проанализировав состояние теории финансового менеджмента, мы находим, что применяемые в практике финансового менеджмента методы комплексного финансового анализа, оценки эффективности и риска инвестиционного проекта, модели и методы оптимизации фондового портфеля, методы прогнозирования параметров финансовой модели хозяйствующего субъекта являются неадекватными характеру поступающей на вход финансовой модели прогнозной информации о состоянии внешнего окружения хозяйствующего субъекта. Помимо этого, существующие методы не учитывают субъективный характер принимаемых решений, не моделируют позначательную активность лица, принимающего финансовые решения, его неполную информационную осведомленность и возникающую в связи с этим неуверенность в ходе классификации уровней анализируемых факторов и показателей. В этом и состоит существо проблемы, которую я ставлю и разрешаю в настоящей монографии.

Применяемые для учета неопределенности субъективно-вероятностные схемы являются неудовлетворительными, так как, потеряв связь с классической основой вероятностной теории – частотной характеристикой генеральной совокупности однородных событий, возникающих при неизменных внешних условиях, - субъективно-аксиологические вероятности не нашли новой фундаментальной основы для своего существования. Вероятность, используемая в ходе оценки, ничего не говорит о субъективных предпочтениях лица, который выдвинул эту вероятностную оценку. Поэтому существует актуальная научная потребность в выработке новых принципов учета информационной неопределенности, связанной с объектом научного исследования. В объект, как мы уже отмечали, входит финансовая система хозяйствующего субъекта и лица, принимающие финансовые решения в этой системе.

Именно поэтому я здесь и во всех предшествующих своих научных работах предлагаю в качестве новой основы для моделирования неопределенности использовать формализмы теории нечетких множеств. Преимущества такого подхода к разрешению проблемы диссертационной работы состоят в следующем:

нечеткие множества идеально описывают субъектную активность ЛПР. Неуверенность эксперта в оценке может моделироваться функцией принадлежности, носителем которой выступает допустимое множество значений анализируемого фактора. Помимо этого, ЛПР получает возможность количественной интерпретации признаков, первоначально сформулированных качественно, в терминах естественного языка;

нечеткие числа (разновидность нечетких множеств) идеально подходят для планирования факторов во времени, когда их будущая оценка затруднена (размыта, не имеет достаточных вероятностных оснований). Таки образом, все сценарии по тем или иным отдельным факторам могут быть сведены в один сводный сценарий в форме треугольного числа, где выделяются три точки: минимально возможное, наиболее ожидаемое и максимально возможное значения фактора. При этом веса отдельных сценариев в структуре сводного сценария формализуются как треугольная функция принадлежности уровня фактора нечеткому множеству «примерного равенства среднему»;

мы можем в пределах одной модели формализовывать как особенности экономического объекта, так и познавательные особенности связанных с этим объектом субъектов менеджера и аналитика, порождая экспертную модель в структуре обобщенной финансовой модели хозяйствующего субъекта.





Содержание раздела