Проведем нечеткую классификацию параметров. Для этого введем лингвистическую переменную «Уровень фактора Х» с терм-множеством значений «Высокий уровень фактора», «Средний уровень фактора», «Низкий уровень фактора». Предполагается, что определения «низкий, средний, высокий» относятся к уровню инвестиционной привлекательности акции применительно к выбранному фактору.
Предшествующий опыт кластеризации на основе гистограмм распределения факторов , построенных при сводном анализе широкого перечня эмитентов ценных бумаг, приводит нас к результатам, котороые сведены в таблицу П4.3. Поскольку все факторы по построению являются относительными характеристиками, то они выражены в процентах.
Классификация факторов с оценкой рангов
Проведем классификацию полученных значений факторов, т.е. сверим таблицы 2 и 3. Результат сопоставления приведен в таблице П4.4.
Комплексная оценка инвестиционного качества ценной бумаги
Определим лингвистическую переменную «Оценка бумаги» с терм-множеством значений «Очень низкая (О), Низкая (Н), Средняя (Ср), Высокая (В), Очень высокая (ОВ)». Чтобы конструктивно описать введенную лингвистическую переменную «Оценка бумаги», определим носитель ее терм-множества – действительную переменную A_N на интервале от нуля до единицы. Тогда функции принадлежности соответствующих нечетких подмножеств могут быть заданы таблично (таблица П4.5);
Определим лингвистическую переменную «Торговая рекомендация для бумаги» с терм-множеством значений «Strong Buy (SB – Определенно Покупать), Moderate Buy (MB – Покупать под вопросом), Hold (H – Держать), Moderate Sell (MS – Продавать под вопросом), Strong Sell (SS – Определенно продавать)».
Установим взаимно однозначное соответствие введенных нами лингвистических переменных на уровне подмножеств: ОН – SS, Н – MS, Ср – H, В – MB, ОВ – SB. Так мы связали качество облигации с ее инвестиционной привлекательностью. Тогда переменная A_N является носителем и для терм-множества лингвистической переменной «Торговая рекомендация», с теми же функциями принадлежности носителя подмножествам значений.
Оценим веса отдельных факторов для комплесксной оценки бумаги, в соответствии с тем, как это записано в (4.20). Согласно правилу точечных оценок Фишберна, критерию максимума неопределенности в части наличной информационной ситуации можно сопоставить следующую систему весов:
p1 = 0.2, p2 = 0.3, p3 = p4 = p5 = 0.166,
Если в качестве носителя лингвистической переменной «Уровень показателя Х» выбрать единичный интервал, то трапециевидные функции правдоподобия будут иметь вид рис. П4.1;