Нечеткие знания 2


 

Очень часто в структуре знаний классы объектов являются нечеткими понятиями. Также высказывающиеся лица могут делать выводы, содержащие элементы неуверенности, оценочности. Это заставляет нас переходить от знаний в классическом понимании к знаниям нечетким.

Введем следующий набор лингвистических переменных со своим терм-множеством значений:

 

                Q = Отношение принадлежности = {Принадлежит, Скорее всего принадлежит, Вероятно принадлежит,...., Вероятно не принадлежит, Скорее всего не принадлежит, Не принадлежит}                                                                                                  

(2.22)

 

                D = Отношение следования = {Следует, Скорее всего следует, Вероятно следует,...., Вероятно не следует, Скорее всего не следует, Не следует }                                                                                                                   (2.23)

 

                AND/OR = Отношение связи = {И/ИЛИ, Скорее всего И/ИЛИ, Вероятно И/ИЛИ,....}                                                                                                                                                                                                                             (2.24)

 

Вводя эти переменные, мы предполагаем, что они содержат произвольное число оттеночных значений, ранжированных по силе (слабости) в определенном порядке. Носителем этих переменных может выступать единичный интервал.

 

Тогда под нечетким знанием можно понимать следующий формализм:

 

                ЕСЛИ (a1Q1X1 Y1 a2Q2X2 Y2... aNQNXN) D aN+1QN+1XN+1,     (2.25)

 

где ai, Xi –значения своих лингвистических переменных,

Qi –значение переменной принадлежности из Q,



Y1 –значение переменной связи из AND/OR,

D - терм-значение переменной следования из D.

 

Характерным примером нечеткого знания является высказывание типа:  «Если ожидаемое в ближайшей перспективе отношение цены акции к доходам по ней порядка 10, и (хотя и не обязательно) капитализация этой компании на уровне 10 млрд. долларов, то, скорее всего, эти акции следует покупать». Курсивом обозначены все оценки, которые делают это знание нечетким.

Поскольку нечеткое знание определяется через лингвистические переменные, то и операции нечеткого логического вывода можно количественно определить на базе операций с соответствующими функциями принадлежности. Однако детальное рассмотрение этого вопроса мы опускаем.

С некоторых пор нечеткие знания начали активно применяться для выработки брокерских рекомендаций по приобретению (удержанию, продаже) ценных бумаг. Например, монография рассматривает вопрос о целесообразности инвестирования в фондовые активы в зависимости от характера экономического окружения, причем параметры этого окружения являются нечеткими значениями. На сайте автор вышеупомянутой монографии поддерживает бюллетень макроэкономических индикаторов и соответствующих условий инвестирования на тех или иных рынках.

Таким образом, мы завершили рассмотрение базовых формализмов теории нечетких множеств и можем переходить к непосредственному изложению предмета настоящей монографии.

 

 

 





Содержание раздела