В дополнение к ФИ-спирали, в природе можно встретить и другие важные геометрические кривые. Из них наиболее существенные для цивилизации — горизонт океана, след метеора, парабола водопада, дуга перемещения солнца, полумесяц и, наконец, полет птицы. Многие из этих естественных кривых могут быть геометрически смоделированы с использованием эллипсов.
Эллипс — математическое выражение овала. Каждый эллипс можно точно описать с помощью всего лишь нескольких характеристик (рисунок 1.7).
S,S2 на рисунке 1.7 — длина большой оси эллипса. S3S4 — длина малой оси эллипса. Эллипс теперь определяется уравнением
Для нас представляет интерес (в контексте анализа Фибоначчи) отношение главной и малой оси эллипса, выраженное на математическом языке в следующей формуле
Рисунок 1.7 Геометрия ФИ-эллипса. Источник: FAM Research, 2000.
Эллипс превращается в ФИ-эллипс во всех тех случаях, где отношение большой оси к малой оси эллипса является элементным числом ряда ФИ 0,618-1,000-1,618-2,618-4,236-6,854- и так далее. Круг — специальный тип ФИ-эллипса, в котором а = Ь и отношение а-=-Ь= 1.