Важным подтверждением серьезного изменения тренда является также пересечение медленной и быстрой линий средних при одновременном подтверждении этого пересечения последней ценой закрытия, т.е. эта цена должна быть соответственно ниже или выше точки пересечения средних (см. рис. 7—3). Но данный сигнал обычно очень сильно отстает от движения цен. особенно после резкой смены быстрого движения.
Наиболее эффективно применять средние при выраженном тренде, когда они его подтверждают. При развороте средние существенно запаздывают, и их сигналы малопригодны для торговли. При стабилизации цен в узком горизонтальном диапазоне значимость средних еще меньше, так как средние тоже стабилизируются в этом диапазоне и дают много ложных сигналов.
Недостатком средних является то, что они используют только цены закрытия и игнорируют величину разброса цен и объемы. То есть они используют не всю первичную информацию. Хотя. как мы уже говорили, цена закрытия для дневных и недельных графиков имеет очень важное значение.
Вычисляя среднее, мы складываем все цены с одинаковыми весами, тем самым значимость прошлых цен точно такая же, как и текущих. Более интересным может оказаться применение взвешенных средних, когда берется не простое арифметическое среднее, а взвешенное среднее — складываются цены закрытия с разными весовыми коэффициентами. Причем значимость прошлых цен за счет подбора таких коэффициентов значительно понижается по сравнению с последними данными. Этот подход позволяет ускорить появление сигналов. В дальнейшем мы столкнемся с экспоненциально сглаженным средним при обсуждении такого осциллятора, как MACD (см. 7.2.8). При построении ЕМА— экспоненциально сглаженного среднего — каждое следующее его значение получается как сумма текущей цены закрытия с большим коэффициентом и с маленьким коэффициентом берется «историческое воспоминание о прошлом».
EMA(t) = k x C(t) + (1-k) x EМА(t-1),
где t — текущий период времени. C(t) — последняя цена закрытия, EMA(t-1) - предыдущее значение экспоненциального среднего, k — коэффициент. Величина коэффициента лежит в пределах от 0 до 1. Начальное значение для ЕМА в этой рекурсивной формуле берется равным цене закрытия того периода, с которого мы начинаем вычисления.
Из формулы для ЕМА видно, что чем ближе к 1 выбирается коэффициент k, тем меньшее значение имеет предыдущее изменение цен. Наоборот, чем ближе этот коэффициент к 0, тем больше значения придается прошлому.
Использование ЕМА аналогично использованию обычного среднего и даст те же самые сигналы.
Bollingеr bound
Границы Боллингерa. Этот индикатор так же естествен с точки зрения прямолинейного применения статистики и теории вероятностей к исследованию набора ценовых данных, как и вычисление движущихся средних.