Ниже приведены лучшие результаты, которые оказалось возможным получить при использовании простой скользящей средней с 10-дневной краткосрочной скользящей средней и 34-дневной скользящей средней:
Чистая прибыль $57.000
Число торгов 28
Число выигрышей 17
Число убытков 11
% выигрышей 60%
Средний выигрыш $4.200
Средний убыток $ 1.300
Средняя торговля $2.000
Коэффициент выигрыш/проигрыш 3,20
Максимальное проседание капитала $5.000
Лучший результат при пересечении со смещенной скользящей средней похож на второй результат, но с чистой прибылью, которая меньше, и составляет 57.000 долларов. Однако для этого потребовалось 34/57 сделок со средней торговлей в $1.000 при проседании капитала, равном 5.600 долларов. При этом использовалось 6-дневная краткосрочная средняя и 25-дневная долгосрочная средняя. При использовании взвешенной скользящей средней мы получаем прибыль, которая тоже чуть меньше - 57.000 долларов, и при этом заключается 18/36 сделок. Коэффициент выигрыш/проигрыш равен 4,0, и при этом средняя торговля составляет 1.600 долларов. Падение капитала также допускается в разумных пределах: на уровне в 5.600 долларов. Экспоненциальная скользящая средняя дала сравнительно слабый результат: она обеспечила всего 23.000 профита при 32% выгодных торгов при максимальном падении капитала, равном 10.000 долларов. Средняя торговля оставалась все еще на уровне в 700 долларов.
Вот что мы получили. Оптимизированные результаты для системы со скользящей средней применяются к рынку бондов. Теперь единственный вопрос заключается в том: какая нам польза от этой информации? Я боюсь, что не слишком большая. Сама по себе эта информация не имеет никакого смысла, кроме того, что при определенных параметрах она дает нам определенные результаты за пятилетний период. Приведенные выше результаты - это то, что вы обычно видите, когда вам предлагают купить метод или систему, то есть это результаты гипотетического тестирования. Чаще всего такие результаты довольно хороши. Тем не менее в следующих разделах книги показано, что оптимизация торговой системы для одного вида финансовых инструментов и одного набора данных очень похожа на оптимизацию метода Фиксированно-Фракционной торговли для какого-то определенного набора данных, как это показано в главе 5. То, что оптимально для одного ряда данных, может оказаться неоптимальным для другого набора.