Зависимость - это оборотная сторона независимости (никакого каламбура). Следующий пример показывает, как зависимость в действительности увеличивает вероятность. Предположим, что у нас есть колода из 20 карт. В этой колоде один трефовый туз. Какова вероятность, что первая взятая наугад карта окажется трефовым тузом? 1 /20 = 5%. Первая карта оказывается десяткой бубен. Она извлекается из колоды, и общее число карт уменьшается до 19. Таким образом, вероятность того, что следующая карта будет трефовым тузом, составляет 5,26315 (1/19=0,0526315). Следующая карта - червонная двойка. Она тоже извлекается из колоды, теперь вероятность того, что следующим выпадет трефовый туз, составляет 5,5555 процента. Из колоды изымаются таким же образом еще 8 карт, и ни одна из них не оказывается трефовым тузом. Теперь остается всего 10 карт. Одна из них - трефовый туз, для всех 10 карт одинакова вероятность оказаться трефовым тузом до тех пор, пока мы не возьмем из колоды следующую карту. Для нее вероятность того, что она окажется трефовым тузом, увеличилась до 10 процентов. Если из колоды извлечь еще 8 карт и ни одна из них не окажется трефовым тузом, у нас остается только 2 возможности. Трефовым тузом будет либо предпоследняя, либо последняя карта. Таким образом, вероятность увеличивается с 5 до 50 процентов. Если следующая карта не окажется тузом, то вероятность, что им окажется последняя карта, равна 100 процентам. Вероятность увеличивается всякий раз при извлечении из колоды очередной карты. Таким образом, процент вероятности зависит от количества извлеченных из колоды карт.
Зависимость образуется потому, что каждая карта, оказавшаяся не трефовым тузом, влияла на число оставшихся вариантов. Вот почему в казино подсчет карт считается незаконным. (Самим играть на законе вероятности, чтобы получить ваши деньги законно, но ваши попытки обмишулить их считаются незаконными!) Если уже изъятая карта вновь включается в колоду и колода перемешивается, то вероятность выпадения нужной карты всегда останется на уровне 5 процентов.
Единственную адекватную модель торговли дает сценарий с монетой. Если вы считаете математически доказуемым, что после серии проигрышей вероятность выигрышной сделки увеличивается, то просто замените каждую выигрышную сделку вариантом, когда выпадает орел, а каждую проигрышную сделку - вариантом, когда выпадает решка. В определенной степени это одно и то же.
А если метод или система стабильно доказывает свою способность приносить прибыль на 75%? Что тогда? Мы получим ответ на этот вопрос, снова обратившись к логической игре с монетами. Допустим, по условиям игры мы можем делать ставки на три броска монеты. У нас только две проигрышные комбинации: о, о, о или р, р, р. Если выпадет какая-либо иная комбинация, мы выиграем. Помните, что существует всего восемь возможных исходов. Два из этих исходов являются проигрышными, в то время как шесть являются выигрышными (6/8=75%). Всякий раз, когда мы подбрасываем монеты трижды, получается либо выигрышная, либо проигрышная комбинация. После этого вновь следуют три броска, и опять существуют все восемь исходов. Поэтому каждый набор бросков имеет 75% вероятности того, что следующая последовательность окажется выигрышной, независимо от предыдущих исходов. Логика остается прежней.
Это подводит нас к изучению статистических данных. Насколько надежны исторические данные при построении прогнозов на будущее? Трейдеры, торгующие с финансовым рычагом, или маржей, зачастую избыточно доверяют статистическим данным. Дело не в самих статистических данных. Существует логика, в соответствии с которой торговые сделки показывают смещение в использовании инструментов. Допустим, предшествующие 100 сделок давали 75 процентов выигрышей и 25 процентов проигрышей. Насколько эти числа дают нам уверенность в том, что из последующих 100 сделок 75 процентов опять будут выигрышными? Ниже приводится шокирующая статистика, которая многим покажется несоответствующей действительности. Если мы исключим смещение, вероятность того, что из 100 сделок 75 процентов окажутся выигрышными, составляет лишь 31,25 процента.