На примере эскимосов и коренных якутов мы уже видели, что большое потребление и мяса, и животных жиров не приводит в определенных случаях к развитию атеросклероза. Вспомним и о долгожителях Оймякона, которые держат лошадей исключительно с целью получения жирного питательного мяса, которое помогает человеку побороть самый лютый холод.
И при этом у них нет никакого атеросклероза.
Остановимся еще на двух моментах исследований М. Брауна и Д. Голдстейна.
Первый состоит в том, что поступающий в избытке в клетки холестерин накапливается в них в качестве эфиров (соединений холестерина с жирными кислотами) и внешне выглядит в виде жировых капелек.
А второй поясняет как образуются атеросклеротические бляшки. Развиваются они медленно и только в местах повреждения тонкого слоя выстилающих артерию клеток эндотелия.
Поврежденное место становится проницаемым для частиц ЛПНП и тромбоцитов крови. Последние секретируют фактор роста тромбоцитов, а он стимулирует разрастание прилегающих гладкомышечных тканей. Одновременно в поврежденное место поступают моноциты (один из типов лейкоцитов крови), которые, захватив подвергшиеся деградации частицы ЛПНП, становятся макрофагами и остаются на месте, превращаясь в так называемые пенистые клетки.
Высвобождающийся из ЛПНП холестерин накапливается в пенистых клетках и между ними, образуя таким образом утолщение в стенке артерии. Просвет артерии от этого сужается, препятствуя току крови.
Пенистые клетки и липидные капельки и являются теми кирпичиками, из которых в течение достаточно продолжительного времени будет построен атеросклероз. Уже в детском возрасте закладываются эти кирпичики, что является следствием достаточно высокого уровня ЛПНП даже в этом возрасте, хотя рождаются дети с очень низкой концентрацией ЛПНП в крови (такой же, как и у животных), но уже на протяжении детских и юношеских лет уровень этих липопротеидов возрастает в 3 - 4 раза.
ПЕРЕКИСНАЯ ГИПОТЕЗА РАЗВИТИЯ АТЕРОСКЛЕРОЗА
А теперь рассмотрим перекисную гипотезу развития атеросклероза, по которой главным фактором, провоцирующим эту болезнь, являются свободные радикалы. Свободным радикалам могут противостоять только антиоксиданты.
И если их достаточно в организме, то развитие болезни может быть не только предупреждено, но возможен и регресс уже имеющегося атеросклероза. При недостатке же антиоксидантов в организме наблюдается беспрепятственное развитие атеросклероза.
Сам механизм развития атеросклероза по этой гипотезе мало изучен. Одни авторы полагают, что свободные радикалы, а это, по-видимому, преимущественно активные формы кислорода, прежде всего повреждают стенки артерий, где затем и начинают формироваться атеросклеротические бляшки. А другие считают, что ведущая роль в атерогенезе принадлежит частицам ЛПНП, подвергшимся окислению свободными радикалами. Окисленные формы ЛПНП, находясь в стенках артерий, вызывают на себя те же моноциты, речь о которых шла выше.
Моноциты, захватив окисленные ЛПНП и став макрофагами, не могут выйти из стенок артерий и переходят в пенистые клетки, из которых и развиваются затем атеросклеротические бляшки по схеме, описанной выше.
По этой гипотезе нам даже не столь важно знать, повреждаются ли вначале стенки артерий свободными радикалами, с чего и начинается затем развитие атеросклероза, или же атеросклероз провоцируют подвергшиеся окислению свободными радикалами частицы ЛПНП. Возможно, что оба эти процесса идут параллельно и независимо друг от друга, то есть частицы ЛПНП могут подвергаться окислению свободными радикалами и стенки артерий могут повреждаться свободными радикалами, а в итоге создаются условия для развития атеросклероза.
И поэтому для нас не столь важна сама по себе схема образования атеросклеротической бляшки - она в конце концов разовьется, если для ее образования в организме имеются соответствующие условия (имеются свободные радикалы при недостатке антиоксидантов).
Для нас принципиально важно установить, почему и по этой гипотезе нам не удается предупредить развитие атеросклероза.
Главным условием для предупреждения развития атеросклероза по перекисной гипотезе является обеспечение организма достаточным количеством антиоксидантов.
Например, жители стран, где наблюдается высокая смертность от ишемической болезни сердца (США, Англия), получают с пищей половину, а то и больше половины суточной нормы основного биоантиоксиданта - токоферола. А токоферол содержится в основном в растительном масле.
Известно также, что антиоксидантными свойствами обладают полифенолы (витамин Р), мочевая и аскорбиновая кислоты.
Периоды активного развития атеросклероза, а также инфаркты и инсульты, отмечаются чаще всего в феврале-марте, то есть в те месяцы, когда в организм поступает меньше всего биоантиоксидантов.
Казалось бы, стоит нам только увеличить потребление биоантиоксидантов и проблема атеросклероза будет решена. Тогда в чем же проблема?
В недостатке продуктов, богатых антиоксидантами или в чем-то другом?
В перекисях всегда существует кислород - кислородная связь.
Перекись водорода используется организмом для синтеза лигнина, придающего упругость стенкам клеток. Поэтому считать образование перекиси водорода в организме только как вредное явление, по-видимому, нельзя.
Пергидроксид тоже является продуктом промежуточных реакций и существует он в организме лишь ничтожные доли секунды, после чего распадается по схеме:
2НО2 - Н2О2 + О2
Как видим, пергидроксид также мало опасен для организма, как и гидроксид.
Супероксид — это отрицательно заряженный свободный радикал О2. Он поступает в организм с вдыхаемым воздухом, но может образовываться и внутри организма.
И в воздухе, и внутри организма он порождается фоновым радиационным излучением (более подробно об этом говорится в 22-ой главе). Вот для борьбы с супероксидом в организме и имеется антиоксидантная система, которая вырабатывает фермент супероксиддисмутазу. Фермент этот катализирует одну-единственную реакцию - взаимодействие супероксидов друг с другом с помощью ионов водорода:
О2 + О2 + 2Н+ - Н2О2 + О2.
В итоге мы получаем те же продукты, что и при распаде пергидрооксида.
Такая реакция называется дисмутацией, то есть она затрудняет мутационные свойства такой формы кислорода. Эта реакция может протекать и самопроизвольно, без фермента, но с последним она идет значительно быстрее и в меньшей степени зависит от условий среды.
Известно, что в состав ЛПНП входит много молекул ненасыщенных жирных кислот. А ненасыщенные жирные кислоты очень реакционноспособны (в противоположность относительно инертным насыщенным жирным кислотам).
Поэтому именно по двойной связи жирных кислот, входящих в ЛПНП, происходит окисление ЛПНП супероксидом с образованием в последнем альдегидов.
Альдегиды могут соединяться с белками или самих ЛПНП, или с белками артериальной стенки. При таком взаимодействии с альдегидами белки чаще всего погибают, поэтому к ним и устремляются макрофаги.
Многие макрофаги с поглощенными ими погибшими частицами ЛПНП не могут выбраться из стенок артерий в кровяное русло и, таким образом, создают основу для будущего разрастания фиброзной бляшки.
Так что же следует считать причиной атеросклероза?
ПРИЧИНА АТЕРОСКЛЕРОЗА
Возможно, что причиной атеросклероза следует считать супероксид - не будь его - не было бы и атеросклероза. Но если мы никак не можем предотвратить поступление супероксида в организм или образование его в самом организме, то неужели мы безропотно должны согласиться с неизбежностью атеросклероза?
А может быть, причина атеросклероза заключается в том, что организм почему-то не в состоянии бороться с супероксидом, хотя защита от последнего в организме и предусмотрена?
Какая же, скажем так, помеха не дает возможности организму нейтрализовывать супероксид еще до того, как он произведет разрушения в нем?
Если мы повнимательнее посмотрим на приведенную выше реакцию дисмутации супероксида, которая протекает с участием фермента, то, конечно, заметим то, чего просто нельзя не заметить, - в этой реакции принимают участие ионы водорода. То есть действие фермента супероксиддисмутазы в этой реакции заключается в выдаче необходимого количества ионов водорода.
Таким образом, мы видим, что инструментом антиоксидантной защиты организма являются ионы водорода.