Организм начинает с помощью инсулина переводить излишки глюкозы на пополнение израсходованных запасов гликогена. Но если по какой-то причине мы взяли лишь небольшую часть этих запасов до очередного приема пищи, то и организм сможет отложить в виде гликогена лишь очень небольшую часть вновь поступившей в кровь глюкозы, а остальную часть глюкозы он отложит уже жировые депо, которые, в отличие от гликогеновых, могут быть безгранично большими. А использовать жировые запасы организму бывает еще сложнее, чем взять глюкозу из гликогена.
Поэтому, накопив жиры в какой-то момент, мы долго не можем расстаться с ними.
Очевидно, что в большинстве случаев мы садимся за стол, не истратив при этом даже третьей части имеющихся в нашем организмах запасов гликогена, не говоря уже о запасах жиров.
Так в чем же заключается причина столь трудной мобилизации энергетических запасов, хранящихся в жировых и гликогеновых депо?
Прежде всего рассмотрим почему так трудно происходит расщепление гликогена до глюкозы? Ведь в этом, по-видимому, и заключается причина нашей излишней полноты.
Запасы гликогена по сути рассчитаны на обеспечение организма энергией между очередными приемами пищи в течение суток. А жировые запасы рассчитаны на обеспечение организма энергией во время более длительных непоступлений пищи, измеряемых уже несколькими сутками, а у некоторых животных и месяцами.
Поэтому сбои в работе нашего гликогенового аккумулятора, в его лишь незначительной разрядке, и являются предпосылкой для нашего чрезмерного увлечения пищей, что и приводит к избыточному накоплению жиров.
А почему лишь незначительно разряжается наш гликогеновый аккумулятор - ответ на этот вопрос поищем в самой природе. Снова обратим свое внимание на растения.
Например, в зернах пшеницы содержится много крахмала - от 49 до 73%, а в среднем 65%. Крахмал этот запасен для ростков будущих поколений пшеницы. В виде крахмала запасы питательных веществ могут храниться длительное время (многие годы). Но когда зерна пшеницы попадают во влажную и теплую среду, благоприятную для жизни растений, то они начинают прорастать. И в этот момент в зернах пшеницы резко возрастает содержание витаминов С и Е. Поэтому ростки пшеницы и используются как поливитаминное средство.
Но высокое содержание этих витаминов наблюдается только в самый начальный момент прорастания зерен, когда ростки бывают не более 1 — 2 мм, а затем производство этих витаминов прекращается.
О чем все это нам говорит? Оставим пока без внимания витамин Е и сосредоточимся только на витамине С. Витамин С - это аскорбиновая кислота. Оказывается, количество этой кислоты возрастает в тот момент, когда росток пшеницы нуждается в глюкозе, когда он может питаться только запасенными в зерне питательными веществами, когда фотосинтеза еще нет или же роль его еще ничтожна. По-видимому, аскорбиновая кислота как-то ускоряет гидролиз крахмала. Непосредственно гидролиз крахмала осуществляют специальные ферменты, а аскорбиновая кислота создает лишь благоприятную среду для эффективной работы этих ферментов, а в итоге росток получает в достаточном количестве глюкозу из крахмала.
Когда же росток начинает обеспечивать себя глюкозой в результате фотосинтеза, то отпадает необходимость в гидролизе крахмала, содержащегося в зерне, и тогда прекращается и синтез аскорбиновой кислоты.
Таким образом, мы видим, что для гидролиза растительного крахмала необходима кислая среда, и она создается в зерне аскорбиновой кислотой.
Мы не будем сейчас рассматривать вопрос - почему для создания кислой среды пшеница пользуется именно этой, а не другой какой-то органической кислотой? Для нас более важно сейчас знать то, что для ускорения гидролиза крахмала растения подкисливают среду, в которой происходит гидролиз.
Но аскорбиновая кислота - это водорастворимая кислота, и получающаяся из крахмала глюкоза тоже растворима в воде. Но в зернах пшеницы кроме крахмала запасены еще и жиры. Многие растения и микроорганизмы могут синтезировать глюкозу и из жирных кислот.
Но чтобы получить жирные кислоты из жиров, последние необходимо так же как и крахмал гидролизовать. А для активации ферментов, гидролизующих жиры, так же необходима кислая среда.
А витамин Е -это не только жирорастворимый витамин, но также и вещество, подкисливающее среду, в которой он находится. Точная биологическая функция витамина Е пока не установлена. Предполагается, в частности, что он участвует в защите липидов клеточных мембран от окисления, то есть является антиоксидантом.
Но и эту функцию он выполняет с помощью ионов водорода, которые он и поставляет в среду, в которой он находится. Следовательно, витамин Е способен подкисливать жиры. Этим он ускоряет процесс гидролиза жиров. В целом в зернах пшеницы содержится около 1 мг витамина Е на 100 г пшеницы, о в зародышах его содержится в 15 раз больше, а при прорастании зерен количество этого витамина в зародышах увеличивается почти в 5 раз. Но когда глюкоза начинает вырабатываться в процессе фото-синтеза, то гидролиз и крахмала, и жиров в зернах прекращается, а одновременно с этим резко снижается и содержание витаминов С и Е в зародышах.
Поэтому и рекомендуется пользоваться в качестве поливитаминного средства только незначительно проросшими зернами, когда в них находится максимальное количество этих витаминов.
Многие из читателей, по-видимому, имели дело с посадкой картофеля и знают, что если в качестве посадочного материала взять очень крупные клубни, то вместе с новым урожаем будут выкапываться и старые, почти неизрасходованные картофелины. Происходит это потому, что старая картофелина израсходовала запасенный в ней крахмал лишь частично — насколько это было необходимо только для выхода новых ростков из-под земли, а дальше в процессе фотосинтеза вырабатывается столько новой глюкозы, что ее хватает и для формирования куста, и для откладывания крахмала в новые клубни.
И как только прекращается надобность в получении глюкозы из запасенного в клубне крахмала, как тут же прекращается и производство аскорбиновой кислоты в клубне, необходимой для процесса гидролиза крахмала.
Каждый вид из растительного мира готовит разные по составу запасы для питания своих будущих поколений: в картофеле, например, 16% крахмала, в пшенице — 65% крахмала и лишь немного жира, а в семенах подсолнечника жиров запасено даже больше, чем крахмала (жиров в среднем 34%, а углеводов до 20%). Почему так происходит — для нас не столь важно. Нам более важно знать то, что растения для мобилизации глюкозы из крахмала и жирных кислот из жиров создают кислую среду в месте гидролиза. И витамины С и Е - это всего лишь кислоты, только одна кислота водо-растворимая, а другая - жирорастворимая. И вот мы видим, что кислотность в зерне в том месте, где находится зародыш, резко повышается в тот момент, когда появляется необходимость в свободной глюкозе.
То есть в тот момент, когда влажность и температура окружающей среды становятся оптимальными для начала жизнедеятельности ростка, но питание он может получить не из внешней среды (еще нет фотосинтеза), а только из находящихся при нем запасов. Но эти запасы еще необходимо перевести в съедобную форму.
Вот здесь и начинается подкисление того же крахмала.
На крахмале мы пока и остановимся, чтобы на примере растений нам легче было бы понять, почему же так трудно мобилизуется глюкоза из нашего животного крахмала - гликогена.
Итак, растения нам подсказывают, что для успешной мобилизации глюкозы из крахмала необходима тоже прежде всего кислая среда. По-видимому, точно так же и для мобилизации глюкозы из гликогена (животного крахмала) необходима кислая среда в месте гидролиза последнего.
Здесь я хочу сказать, что не так просто перекинуть связующую нить с тех же растений на организм человека. Если растениям и нужна кислая среда для ускорения гидролиза крахмала, то многие мои оппоненты могут отвергнуть эту аналогию на том только основании, что растения и животные относятся к разным царствам.
Все это верно. Но законы химии все же одинаково действуют не только в разных биологических царствах, но и в неорганическом мире.
Очень часто и терминология в науке не упрощает саму суть явления, а нередко даже вводит нас в заблуждения. Например, одно и то же химическое действие - ускорение химической реакции, в неорганической химии называется катализом, а в органической - ферментативним катализом. А сами вещества, ускоряющие реакции, называются соответственно катализаторами и ферментами, а в медицине еще и энзимами. Ясно, что ферменты и энзимы — это те же катализаторы, только биологические.
Но там, где начинается биология или медицина, там, мне кажется, кончается четкая определенность и начинается нечто необъяснимое и загадочное. Если мы будем говорить о катализаторах, которые используются, например при производстве серной кислоты, то нас обязательно будут интересовать условия, при которых они проявляют максимальную активность.
Мы будем стремиться выполнять эти условия, иначе это скажется и на производительности технологических установок, и на экономических показателях всего производства.