КОНСТРУКТОР ДВИГАТЕЛЕЙ Общие соображения
Для того, чтобы сознательно и рационально следить за своим здоровьем, каждому мыслящему человеку надо знать, что происходит в его мышцах, когда они по его желанию то сокращаются, совершая задуманную работу, то снова расслабляются. К сожалению, современный уровень знаний физиологии, биофизики и биохимии не позволяет сегодня создать хотя бы приблизительную схему, объясняющую это явление.
Поэтому читатель должен простить автору попытку самому создать такую воображаемую схему механизма мышечного сокращения, которая по всем пунктам технического задания отвечала бы наблюдениям, сделанным учеными при изучении физиологии живых мышц.
Техническое задание формулируем исходя из явлений, которые наблюдают физиологи в мышцах.
1. При постепенном сокращении мышцы происходит постепенное уменьшение электрозаряда в ней. Следовательно, при одном и том же грузе каждой геометрической длине сокращенной мышцы соответствует свой определенный отрицательный заряд (см. 12, уч.
В-С-Д).
2. При подъеме груза мышцей совершается работа, равная произведению веса гири на высоту ее подъема.
3. При совершении работы рука устает.
4. Рука еще больше и быстрее устает, если держать поднятую гирю на одной высоте.
5. При сокращении длины мышцы увеличивается ее поперечный размер по закону х2у=VК, где х ширина мышцы, у длина, V объем расслабленной мышцы и К коэффициент. (Объем мышцы практически не изменяется и после ее сокращения) (см. 39).
6. Сокращенную (напряженную) мышцу очень трудно сжать в поперечном направлении. Почему-то в мышце появляются силы противодействия.
Если перестать сжимать мышцу, то эти силы мгновенно исчезают и форма мышцы не изменяется.
7. Из работающей и неработающей мышцы выделяется тепло.
8. Через несколько часов (23) после смерти человека тепло исчезает и его мышцы постепенно приходят в состояние контрактуры (трупного окоченения), при котором мышцы приобретают твердость фарфора, а все жидкости из мышц вытесняются во внутренние органы.
9. По истечении некоторого времени состояние контрактуры прекращается, и мышцы снова приобретают мягкость.
10. Если перерезать нервы (аксоны), соединяющие мозговое вещество с мышцами, то есть прекратить в них поступление нервных импульсов, то контрактуры в мышцах не наступает.
11. При купании в холодной воде или при перенапряжении нередко наблюдаются судороги отдельных мышц, то есть частичные контрактуры их.
12. Мышца при судороге твердеет, заболевает.
Только длительный массаж ликвидирует последствия уплотнения мышцы от судороги и от скопления солей и шлаков. Это еще раз подтверждает плохую самостоятельную очистку клеток от шлаков без вмешательства посторонних сил.
13. Если перерезать у плеча нервный ствол руки, то рука повисает как плеть.
Однако кровообращение в ней не нарушается, но путь для биотоков прерывается, вследствие чего клетки атрофируются, венозная кровь уносит их атомы и молекулы, мышцы высыхают и кожа обтягивает кости.
14. Противоположное явление, то есть увеличение размеров объема мышцы более чем в два раза, наблюдается у нетренированного человека после усиленных упражнений с гантелями, гирями и штангой, то есть после систематического возбуждения сильных биотоков.
15. При изучении структуры мышцы с помощью электронного микроскопа выяснилось, что для обеспечения закономерного, продольного сокращения мышцы, а также для проявления всех четырнадцати перечисленных выше свойств мышц природе пришлось всю полость мышцы разделить на продольные поперечнополосатые мышечные волокна, имеющие диаметр поперечного сечения около 0,05 сантиметра.
Рис. 33.
Схема элементарного поперечнополосатого мышечного волокна и миофибриллы.
34. Схема сочетания тонких и толстых протофибрилл в миофибрилле.
сячную миллиметра. Такое микроскопическое дробление нитей позволяет предположить, что механизм мышечного сокращения природа могла осуществлять только на молекулярном уровне.
Какой вид энергии превращается мышцей в механическую энергию подъема гири?
Предлагаемая силовая схема принципа механизма мышечного сокращения должна безоговорочно отвечать всем требованиям и свойствам, которыми природа на-
35. Поперечное сечение мышца.
Гексагональное расположение протофибрилл. Снимок сделан с помощью электронного микроскопа.
делила мышцы человека. Если же схема не объясняет хотя бы одного из перечисленных свойств живой мышцы, то это значит, что вся идея схемы никуда не годится.
Прежде чем приступить к разработке воображаемой схемы, надо сперва разобраться в том, какой же вид энергии превращается мышцей в механическую энергию. В нашем распоряжении имеется восемь видов производительных энергий: термодинамическая, аэродинамическая, гидродинамическая, солнечная, атомная, ядерная, химическая, электрическая.
Для того чтобы мышца совершала работу, любой вид энергии должен быть превращен в механическую энергию, потенциальную (сжатая пружина) или кинетическую (летящая пуля).
Термодинамическая энергия для наших рассуждений не годится, так как превращение ее в механическую обязательно требует изменения объема рабочего тела, а объем расслабленной и сокращенной мышцы практически не меняется.
Аэродинамическая и гидродинамическая энергии также не подходят, так как для превращения их в механическую требуется циркуляция больших объемов газов или жидкостей, которых в мышцах не наблюдается.
Атомная и ядерная энергии, сопровождающиеся выделением вредных лучеиспусканий, также исключаются.
Превращение химической энергии в механическую в основном возможно только с помощью отвергнутой нами термодинамики или через мембраны, путем непосредственного превращения химической энергии в электрическую.
Солнечная энергия также непосредственно превращается в электрическую.
Эти рассуждения позволяют сделать первый и важнейший вывод: для механизма мышечного сокращения природа могла выбрать только электрическую энергию, непосредственно превращающуюся в механическую.
Какие же силы могут действовать на молекулярном уровне протофибрилл? Силы гравитационного поля, силы ковалентных связей и силы электромагнитных полей. Гравитационные силы ничтожно малы, ими можно пренебречь, поэтому остаются только электрические силы взаимодействия между ионами. Других сил взаимодействия между молекулами на этом уровне существовать не может.
Поэтому «гипотеза скольжения», выдвинутая зарубежным биологом Хаксли, нереальна и ошибочна, так как она не дает научного объяснения перечисленным выше свойствам живой мышцы.
Вторым фактором, подтверждающим правильность нашего выбора электрической энергии, является пункт 1 нашего технического задания, где указано, что подъем груза сопровождается падением электрозаряда в мышце и каждой геометрической длине ее соответствует определенный электрозаряд. Следовательно, имеется непосредственная связь между электроэнергией и работой мышцы.
Теперь ставим вопрос: как превратить электрическую энергию в механическую работу на молекулярном уровне? Электротехникой создано для этого много машин и механизмов различных типов.
Но к мышцам, состоящим из молекул, их конструкция неприменима. Однако существуют приборы, позволяющие электроэнергию превратить в работу с помощью наэлектризованных молекул.
Таким механизмом является элементарный ученический электроскоп ( 36). Вы заряжаете электрозарядом лепестки бумаги или фольги, сложенной пополам, и кончики бумаги расходятся, так как одноименные заряды Е Е отталкиваются.
Работа электрозарядов равна (за вычетом потерь) работе преодоления молекулярной упругости бумаги. Можно представить себе и более сложную схему. В четырехзвеннике ( 37) молекулы в виде шарниров А и В заряжены одноименными заря-
дами. Силы отталкивания между ними создают силу подъема гири.
Для получения этой силы мы ввели в схему два электрозаряда А и В. Но такая силовая схема противоречит пункту 1 нашего технического задания, где эксперимент утверждает, что подъем груза сопровождается, наоборот, уменьшением заряда.
Можно подобрать схему, отвечающую этой задаче. Для этого введем в схему многозвенника еще электрозаряды С и D противоположного знака по отношению к зарядам А и В. Выберем количество электрозарядов в точках А, В, С и D так, чтобы звенья нашего ромба находились в равновесии (пунктирная схема).
Теперь отнимем от молекул С и D по одному заряду, Тогда заряды D и С будут слабее отталкиваться друг от друга, и равновесие в фигуре нарушится. Для того чтобы восстановить равновесие, к точкам С и D надо приложить силу, способную поднять гирю, тогда во всех звеньях молекул вновь наступит равновесие.