где bтр - ширина траншеи, м;
D - диаметр трубопровода, D = 0,3 м;
Зм - запас на монтажные работы, Зм = 0,6 м.
Учитывая размер траншеи по дну можно подобрать такой экскаватор, ширина ковша которого будет меньше ширины траншеи.
Типовое сечение траншеи показано на чертеже (лист ).
При строительстве трубопровода применяют траншейный и бестраншейный способы строительства трубопровода.
Строительство водопроводов складывается из следующих процессов:
Подготовительные работы по трассе водопровода сводятся к расчистке полосы от деревьев, кустарника. Кроме того, на некоторых участках трассы необходимо будет вскрыть асфальтовое покрытие и вывезти его на строительную свалку.
Разработку грунта в траншеях под трубопроводы ведут в соответствие с проектной глубиной залегания труб, Нтр = 2,0 м.
Для разработки грунта в траншеях используют различные машины, начиная с одноковшовых экскаваторов и заканчивая многоковшовыми экскаваторами.
Крепление вертикальных стенок траншей выполняют в неустойчивых грунтах, а также во всех случаях, когда глубина траншеи превышает допустимую по правилам безопасности ведения работ. Для крепления обычно применяют деревянные щиты. В нашем случае крепление траншеи не требуется, т.к. грунты устойчивые.
Сварку труб в звенья проводят на бровке траншеи. Длина свариваемых звеньев (ниток) трубопровода составляет 80…100м.
Монтаж трубопровода выполняют после подготовки и проверки основания. При подготовке и проверке основания предъявляются следующие требования:
Укладку отдельных ниток трубопровода в траншею обычно проводят при помощи нескольких специальных трубоукладчиков. Укладываемые на дно траншеи звенья тщательно центрируют с помощью приспособлений (центраторов) и затем сваривают звенья трубопровода и тщательно изолируют.
Засыпка траншей после монтажа труб выполняется в два этапа. Вначале засыпают приямки, сделанные под стыками для удобства сварки и подбивается грунт под бока труб с тщательным уплотнением. Одновременно засыпают трубы сверху на 0,3…0,5 м, оставляя открытыми все сварочные швы (стыки).
Дальнейшую засыпку (второй этап) проводят после проведения предварительного испытания трубопровода и устранения всех недостатков. Засыпку траншеи ведут послойно с уплотнением грунта механизированными ручными трамбовками.
Испытание трубопровода проводят вначале предварительное, а затем окончательное. Предварительное и окончательное испытания в летнее время проводят гидравлическим способом.
На чертеже (лист ) показаны основные работы по строительству трубопровода.
При пересечении трубопровода с действующими инженерными коммуникациями (дороги, трубопроводы, кабели и т.д.) применяют бестраншейный способ прокладки трубопровода.
Суть всех известных способов состоит в том, что с одной стороны отрывают рабочий котлован, с которой трубу проталкивают под препятствием до выхода в приемный котлован до противоположной стороны.
Бестраншейную прокладку можно осуществить:
а) продавливанием домкратами без выемки грунта (прямой прокол для труб D = 100…150 мм и L 30 м);
б) вибропроколом и гидропроколом (D 500 мм, L 100 м);
Кроме этого, водопроводные линии, проложенные в кожухе, лучше выдерживают динамические нагрузки. Особенно это важно при проколе под дорогами.
На чертеже (лист ) показана схема прокола трубопровода под автомобильной дорогой.
Для снятия растительного грунта по трассе водопровода и обратной засыпки траншеи принимают бульдозер ДЗ-8 на базе трактора Т-75.
Для очистки части трассы от асфальта используют отбойные молотки.
Для разработки грунта в траншее с учетом размеров траншеи выбираем экскаватор с рабочим оборудованием обратная лопата марки ЭО-3322А. Его основные параметры:
Для укладки звеньев труб принимаем трубоукладчики ТЛГ-4М.
Для проведения гидравлических испытаний участков трубопровода принимаем гидравлический пресс, который должен обеспечивать испытательное давление:
Рисп = Рраб + Затм = 5 + 3 = 8 атм, (4.3)
где Рисп - испытательное давление, атм;
Рраб - рабочее давление, Рраб = 5 атм;
Затм = 3 атм.
Потребное количество труб можно определить по следующей формуле:
Nтр = L/L' = 6400/5 = 1280 штук, (4.4)
где Nтр - потребное количество труб, шт.;
L - общая длина водопровода (L = 6400 м);
L' - длина одной трубы (L' = 5 м)
Общая масса труб определяется следующим образом:
Мтр = m Nтр = 510 кг 1280 шт. = 652 800 кг 653т, (4.5)
Где Мтр - общая масса труб, кг (т);
m - масса одной трубы (m = 510 кг);
Nтр - потребное количество труб, шт.
Для транспортировки труб от склада до приобъектного склада используем бортовые автомобили грузоподъемностью 10т. Для перевозки всех труб на приобъектный склад потребуется следующее количество рейсов:
Nрейс = Nтр /К' = 1280/20 = 64 рейса, (4.6)
где Nрейс - потребное количество рейсов, рейсы;
Nтр - потребное количество труб, шт.;
К' - количество перевозимых за один рейс труб (К' = 20 шт./рейс).
Определение потребного количества автомобилей, необходимых для перевозки труб. Количество автомобилей определяется по формуле (округляем в большую сторону, чтобы обеспечить необходимый минимум):
Nавт = I/П = 3,78/1,34 = 2,82 3 автомобиля, (4.7)
где Nавт - потребное количество автомобилей, шт.;
I - интенсивность движения, то есть необходимое количество рейсов за один рабочий день (одну смену), рейс/смена.
I =
, (4.8)
где Nрейс - количество рейсов (Nрейс = 64);
Кн - коэффициент неравномерности движения, учитывающий непредвиденные обстоятельства (Кн = 1,3);
t - продолжительность доставки труб на склад (t = 1 месяц или t = 22 рабочих дня), тогда:
I =
= 3,78
;
П - производительность автомобиля или количество рейсов, которое может выполнить один автомобиль за один рабочий день.
П =
, (4.9)
где Тсм - продолжительность одной смены, мин (Тсм = 860 = 480 мин.).
Тц - продолжительность одного цикла, мин:
Тц = t1 + t2 + t3 + t4 + t5,
где t1 - время подачи автомобиля под загрузку, t1 = 10 мин;
t2 - время загрузки автомобиля, t2 = 30 мин;
t3 - время груженого хода, мин:
t3 =
=
= 1,67 часа (или 100 мин), (4.10)
L - расстояние до объекта (L = 50 км);
Vг.х. - скорость груженого хода (Vг.х. = 30 км/час).
t4 - время разгрузки автомобиля (t4 = 30 мин).
t5 - время обратного хода автомобиля, мин:
t5 =
=
= 1,43 часа (или 86 мин), (4.11)
где Vх.х. - скорость холостого хода (Vх.х. = 35 км/час).
Кз - коэффициент случайных задержек (Кз = 1,4).
Тогда Тц = 10 + 30 + 100 + 30 + 86 = 256 мин.
П =
= 1,34
.
Технологический расчет выполнен на 1000 погонных метров водопровода. Общая же длина водопровода составляет 6400 м. В расчете определены:
При определении количества машино- и человеко-часов были использованы следующие нормативные документы: ведомственные нормы и расценки (ВНиР, выпуск 1), единые нормы и расценки (ЕНиР, сборник 9; ЕНиР, сборник 11; ЕНиР, сборник 22).
Машиноемкость (машино-часы) определялась по следующей формуле:
М-ч =
, (4.12)
где Vраб - объем работ;