Начнем с начала


Такая же неоднозначность возможна в экспериментах с ингибиторами белкового синтеза. Поскольку белки образуются из аминокислот, воздействие этих ингибиторов приводит к тому, что аминокислоты не включаются в белки, а накапливаются в клетке. Некоторые из них, будучи исходным материалом для построения белков, служат также мощными нейромедиа-торами, и их избыток может нарушать нормальную электрическую активность нейронов. Поэтому ингибиторы белкового синтеза могли бы вызывать амнезию, обусловленную не дефицитом вновь синтезируемых белков, а повышением внутриклеточной концентрации аминокислот [22]1.

В первом порыве энтузиазма по поводу "молекул памяти" многие исследователи забыли об осторожности, необходимой при оценке столь неоднозначных биохимических и поведенческих эффектов, что в конечном счете привело к дискредитации не только их собственных результатов, но и целого научного направления. Начнем с начала
По мере того как на поверхность выплывали противоречия и артефакты ранних исследований, дутые научные репутации стали лопаться словно пузыри, а приток исследователей в новую науку прекратился и затем повернул вспять. В течение нескольких лет было очень непросто получить средства на исследования памяти; те из нас, кто сохранял верность избранному пути, оказывались в изоляции, и к их данным относились в лучшем случае с вежливым скептицизмом. И когда в начале восьмидесятых годов память снова стала модным объектом нейронаук, она явилась уже в новом обличье.
1 Этот пример разносторонних последствий даже очень простого химического вмешательства в сложные биохимические процессы наглядно показывает несостоятельность рассуждений представителей фармацевтической промышленности о "побочном действии" лекарственных средств. Введение в организм экзогенного вещества приводит к разнообразным биологическим эффектам, частью предвидимым, а частью совершенно неожиданным, но их никак нельзя считать "побочными". Это неверный термин, маскирующий неизбежность таких последствий, которых исследователь или врач не желал или о которых не подумал.

Ни одно лекарственное средство не может быть "волшебной пулей", попадающей только в одну мишень.
Примерно к тому времени относится моя статья под несколько провоцирующим, как я надеялся, заглавием: "Какой должна быть биохимия научения и памяти?" [23]. Мне казалось, что с проблемами памяти в какой-то мере соприкасаются все новые научные направления. Многие лаборатории с энтузиазмом включились в эту работу, используя разнообразные парадигмы научения, нередко напрямую заимствованные из экспериментальной психологии. Однако это не означает, что широко применяемые в психологии методы (как, например, выработка у крыс реакции нажатия на рычаг для получения корма в скиннеровской клетке) столь же пригодны и для изучения клеточных и биохимических процессов в организме.

Иногда объем новой информации, приобретаемой животным в психологическом эксперименте, попросту недостаточен для того, чтобы можно было выявить сопутствующие биохимические изменения. Исследователям биохимии памяти требовались новые модельные системы, в которых изучаемые изменения были бы достаточно велики, чтобы их удавалось выявить, и в то же время было бы ясно, что это не простые артефакты. Известны случаи, когда люди переключались на другие проблемы, считая, что если какие-то биохимические изменения в мозгу действительно "кодируют" память, то они слишком малы для успешного обнаружения, а если они достаточно выражены, то скорее всего не имеют к памяти никакого отношения.
Вопрос о масштабах возможных биохимических изменений был (и даже сейчас остается) весьма серьезным. Физиологи и психологи всегда покорялись необходимости применять статистический анализ для оценки значимости своих результатов. Это не устраивает многих биологов биохимической ориентации, особенно молекулярных биологов, так как изучаемые ими явления нередко подчиняются принципу "всё или ничего" или по крайней мере столь значительны, что различия в экспериментальных условиях или воздействиях приводят к четким различиям в результатах.



Если для демонстрации какого-то эффекта нужна статистика, утверждают они, то этот эффект может оказаться нереальным и уж во всяком случае не может быть значительным. Фрэнсис Крик совершенно определенно высказался по этому поводу на дискуссионном заседании Королевского общества в Ловдоне в 1977 году, обсуждая доложенные мною данные о 1520%-ных изменениях скорости белкового синтеза и ферментативной активности при импринтинге у цыплят
и первом воздействии света на крыс [24]. Если изменения не превышают 100%, их следует игнорировать: значит, вы изучаете не ту систему или неправильно спланировали эксперимент, настаивал Крик. Однако присутствовавших физиологов и психологов поразил тот факт, что простая тренировка на импринтинг или любая другая форма обучения вообще могла дать заметные изменения, и в поисках источников артефакта они подвергли наши эксперименты столь же строгому анализу, какой в свое время проводил я сам, пытаясь разобраться в опытах по "передаче памяти".
Независимо от величины наблюдаемых эффектов вставал еще один вопрос, очень важный в теоретическом плане: специфичны ли обнаруженные нами биохимические изменения для импринтинга у цыплят, т. е. действуют ли здесь какие-то особые механизмы, отличные от тех, что лежат в основе проявлений памяти у взрослых птиц или других животных? Или мы имеем дело с биохимическим механизмом, общим для всех видов научения? Психологи различают много форм памяти процедурную и декларативную, эпизодическую и семантическую, "рабочую" и "справочную", и следует ли ожидать, что для каждой из них имеется свой собственный биохимический механизм, или же во всех случаях происходят сходные изменения на биохимическом и клеточном уровнях?

Существует ли универсальный клеточный механизм памяти у млекопитающих, позвоночных и даже всех животных вообще, или он специфичен для определенных групп организмов?
От ответа от эти вопросы будет зависеть, на каком уровне следует изучать память. Если ключевую роль здесь играют биохимические процессы, то можно ожидать, что каждый вид памяти связан с синтезом каких-то уникальных белков или иных молекул. А если принять другую точку зрения и считать память свойством мозга как системы, а не его отдельных клеточных или молекулярных компонентов, то память должна будет зависеть не от конкретных биохимических процессов, а от того, в каких именно клетках или синапсах происходят изменения, от локализации этих клеток в нервной системе и от их связей с другими клетками.
Вспомним о входной двери в подъезде дома с набором кнопок для звонков. В принципе возможны два способа устройства этой системы, позволяющих известить о приходе посетителя к жильцу той или иной квартиры: либо все звонки слышны во всех квартирах, но различны по звучанию, либо звук
у всех звонков одинаков, но каждый из них раздается только в определенной квартире. В первой системе (звуки разные и слышны везде) "смысловое содержание" звонка заключено в его специфическом звучании, а во второй значение имеет не сам звонок, а способ проводки. Эти две возможности по сути дела иллюстрируют два возможных способа работы биохимического механизма памяти.

По мнению тех, кто верит в "молекулы памяти", запоминаемая информация заключена как бы в звонке с уникальным звучанием; для тех же, кто считает память системным свойством мозга, звонок это лишь часть (хотя и важная) всей системы, и чтобы понять смысл его звучания, надо не прислушиваться к звуку, а знать систему проводки.
Если правилен второй подход (а я верю в это, несмотря на весь свой биохимический энтузиазм), то изучаемые мною биохимические события скорее всего отражают общий обмен белков, в том числе мембранных, часть того, что иногда называют "домашним хозяйством" клетки. (Часто это выражение употребляют с уничижительным оттенком, особенно биохимики-мужчины, которые, видимо, не считают домашнее хозяйство достаточно серьезным делом.) Память заключена в топографии (схеме связей) и динамике нейронной системы. Это означает, что клеточные механизмы запоминания, скажем, телефонного номера или правил вождения автомобиля существенно не различаются: просто в них участвуют разные клетки, по-разному связанные с другими частями мозга.
В начале восьмидесятых годов я думал, что, пока мы не получим более подробных ответов на все эти вопросы, будет трудно понять и сравнить многообразные и подчас противоречивые результаты, полученные в разных лабораториях. Какова их зависимость от небольших особенностей процедуры обучения или от вида используемых животных? Имеет ли смысл добавлять еще одну случайную крупицу знания ко все растущему списку феноменов памяти?

Много ли мы имеем "подлинных" обобщений, не ограниченных определенным видом животных или используемым тестом, обобщений, которые могли бы быть опорой при построении клеточного и биохимического "алфавита" памяти? Или эти попытки так же бесплодны, как погоня за блуждающими огнями?
Огромные достижения молекулярной биологии стали возможны потому, что научные коллективы, игравшие ведущую роль в программах экспериментальных исследований в 50-х и 60-х годах,



Содержание раздела