Главы  1  2  

Решение

Прежде всего заметим, что A должен быть лжецом. Действительно, если бы A был рыцарем, то из его высказывания следовало бы, что все трое лжецы. Но тогда A (по предположению, рыцарь) оказался бы лжецом, что невозможно. Следовательно, A - лжец. Но тогда его высказывание ложно и по крайней мере один из трех островитян A, B и C - рыцарь.
   Предположим теперь, что B - лжец. Тогда A и B - оба лжецы, поэтому C должен быть рыцарем (так как по крайней мере один из трех островитян рыцарь). Это означает, что ровно один из трех островитян рыцарь, и, следовательно, высказывание B истинно, но это невозможно, так как любое высказывание лжеца не истинно. Отсюда мы заключаем, что B должен быть рыцарем.
   Итак, мы установили, что A - лжец, а B - рыцарь. Так как B - рыцарь, то его высказывание истинно, поэтому ровно один из трех островитян - рыцарь. Им должен быть B, следовательно, C должен быть лжецом. Итак, A - лжец, B - рыцарь и C - лжец.




Содержание раздела