Главы  1  2  

Решение

109 - 112. Эти четыре задачи основаны на использовании одной и той же идеи, которая сводится к следующему. Пусть P - любое высказывание, а A - любой обитатель острова рыцарей и лжецов. Тогда если A высказывает утверждение: "Если я рыцарь, то P", то он должен быть рыцарем, а высказывание P должно быть истинным! B это трудно поверить, и мы докажем наше удивительное утверждение двумя способами.
   1. Предположим, что A - рыцарь. Тогда высказывание "Если A - рыцарь, то P" должно быть истинным (так как рыцари всегда говорят правду). Следовательно, A - рыцарь, и верно, что если A - рыцарь, то P. Из этих двух фактов мы заключаем, что P должно быть истинно. Таким образом, приняв в качестве посылок предположение о том, что A - рыцарь, мы получаем в качестве заключения высказывание P. Тем самым (с учетом факта 4 об импликации) мы доказали, что если A - рыцарь, то P. Но именно это и утверждал A! Следовательно, A должен быть рыцарем. А так как мы доказали, что если A - рыцарь, то P, то заключаем, что P должно быть истинно.
   2. Другой способ убедиться в истинности нашего утверждения состоит в следующем. Напомним, что из ложного высказывания следует любое высказывание. Поэтому если A не рыцарь, то высказывание "Если A - рыцарь, то P" автоматически становится истинным и, следовательно, не могло бы принадлежать лжецу. Значит, если кто-нибудь, о ком известно, что он может быть либо рыцарем, либо лжецом, высказывает такое утверждение, то он может быть только рыцарем и высказывание P должно быть истинным.
   Применим этот принцип к нашим задачам. Начнем с задачи 109. Если в качестве P принято высказывание "В - рыцарь", то ясно, что A должен быть рыцарем, а его высказывание истинным. Следовательно, B - рыцарь, и мы получаем ответ: A и B - оба рыцари.
   В задаче 110 в качестве P выберем высказывание "А придется съесть свою шляпу". Мы видим, что A должен быть рыцарем и что ему придется съесть свою шляпу. (Тем самым доказано, что хотя рыцари обладают несомненными достоинствами и добродетелями, они тем не менее могут быть глуповатыми.)

Ответ к задаче 111: A - рыцарь.

   Правильное заключение, к которому можно прийти в задаче 112: автор опять мистифицирует читателей! Условия задачи противоречивы: высказывание "Если я рыцарь, то дважды два - пять" не может принадлежать ни рыцарю, ни лжецу.






Содержание раздела