Введение   Главы  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23

 24   Приложения  1  2  

Методы извлечения и адаптации прецедентов



22.1.2. Методы извлечения и адаптации прецедентов

В системах формирования суждений на основе прецедентов используются разные схемы извлечения прецедентов и их адаптации к новым проблемам.

В таких программах, как CHEF, сопоставляются описания имеющихся прецедентов и полученная спецификация цели, причем в качестве основного средства сопоставления выступает семантическая сеть (см. главу 6). В примере, рассмотренном в предыдущем разделе, модулям извлечения и модификации известно, что и брокколи, и зеленый горошек — это свежие овощи. Модуль извлечения использует эту информацию для вычисления оценки степени близости прецедента и целевой спецификации, а модуль модификации использует эту же информацию для подстановки в рецепт одного ингредиента вместо другого. Это фоновое знание играет весьма существенную роль в решении обеих задач.

Сложность поиска решения и выявления различий между прецедентами в значительной степени зависит от используемых термов индексации. По сути, прецеденты в базе прецедентов конкурируют, пытаясь "привлечь" к себе внимание модуля извлечения, точно так же, как порождающие правила конкурируют за доступ к интерпретатору. В обоих случаях необходимо использовать какую-то стратегию разрешения конфликтов. С этой точки зрения прецеденты должны обладать какими-то свойствами, которые, с одной стороны, связывают прецедент с определенными классами проблем, а с другой — позволяют отличить определенный прецедент от его "конкурентов". Например, в программе CHEF прецеденты индексируются по таким атрибутам, как основной ингредиент блюда, гарнир, способ приготовления и т.п., которые специфицируются в заказе.

Механизм сопоставления должен быть достаточно эффективным, поскольку исчерпывающий поиск можно применять только при работе с базами прецедентов сравнительно небольшого объема. Одним из популярных методов эффективного индексирования является использование разделяемой сети свойств (shared feature network). При этом прецеденты, у которых какие-либо свойства совпадают, включаются в один кластер, в результате чего формируется таксономия типов прецедентов. Сопоставление в такой разделяемой сети свойств выполняется с помощью алгоритма поиска в ширину без обратного прослеживания. Поэтому время поиска связано с объемом пространства логарифмической зависимостью. Индивидуальное сопоставление, как правило, выполняется следующим образом.

Каждому свойству (или размерности) присваивается определенный вес, соответствующий степени "важности" этого свойства. Если, например, прецеденты включают счета пользователей, то имя пользователя, скорее всего, не имеет значения при поиске группы прецедентов с похожими счетами. Следовательно, свойство имя может иметь вес 0. А вот остаток на счете (в долларах) имеет очень существенное значение и ему следует придать вес 1.0. Чаще всего значения весов — это действительные числа в интервале [0,1].

Из всех этих рассуждений вытекает простой алгоритм сопоставления прецедентов, представленный ниже.



Содержание раздела