Такая электронная схема могла бы нам верно служить, способствуя быстрому определению необходимой реакции на сложившуюся ситуацию, если мы предусмотрели все возможные ситуации, знаем, какое решение соответствует каждой из них, и всегда обладаем полной и точной информацией о происходящих событиях. Но ведь не зря мы обращаем внимание на те помехи и неопределенность, в условиях которых приходится жить и работать. Мы должны оперировать только достоверностями либо другими оценками событий, пытаясь определить, какой ситуации более всего соответствуют сложившиеся обстоятельства.
Значит, мы должны из точного, детерминированного представления перейти в область ассоциативного, неточного, приблизительного мышления! Но степень (частота) угадывания должна быть достаточно высока.
Именно здесь помогает нейросеть.
Прежде всего надо перейти от типа булевых переменных к типу действительных, введя в обращение не непреложность событий, а лишь вероятности или другие весовые оценки их наступления (электронной технике это не свойственно.) Затем необходимо реализовать аналоги булевых функций над этим новым типом данных, т.е. заставить нейроны с помощью весов, порогов и самой передаточной функции выполнять дизъюнкции и конъюнкции с учетом вариации и неопределенности данных. При этом абсолютно достоверные данные, несомненно, приведут к известным решениям, а по неточным данным можно определить лишь вес каждого из возможных решений. Тогда по максимальному весу определим, на что более всего похожа данная неопределенная ситуация.
Выберем передаточную функцию произвольного (/го) нейрона с числом т входов — дендритов:
Здесь как всегда, величина возбуждения. Тогда нейронконъюнктор может быть реализован с помощью существенно высокого порога (рис. 2.2), где значение
При обучении предполагается, что входные сигналы булевы переменные, принимающие значения 0, 1. Положим выберем