Поезд на Сендай тронулся настолько плавно, что никто не успел заметить момента начала движения. Лишь с неправдоподобным ускорением рванулся назад индустриальный пейзаж за окном. И только один из пассажиров знал секрет колдовской мягкости хода и экономичности этой необычной <электрички>. Это был Лотфи Заде (Lotfi Zadeh), профессор из университета Беркли, чьи работы в конце 60-х годов дали начало новой науке - fuzzy logic или нечеткой логике. Действительно, движением пригородных поездов до японского города Сендай, начиная с 1987 года управляет система, основанная на нечеткой логике (кстати, некоторые характеристики этой системы и сегодня - спустя почти десятилетие - остаются недостижимыми для железнодорожников многих стран).
Судьба нечеткой логики, как нового научного направления, сходна с ее содержимым - необычна, сложна и парадоксальна. Обвинения в шаманстве и лженаучности преследуют ее уже более четверти века. В США еще помнят времена, когда увлечение теорией Заде могло всерьез повредить карьере молодого ученого. Достаточно сказать, что даже в 1989 году, когда примеры успешного применения нечеткой логики в обороне, промышленности и бизнесе исчислялись десятками, Национальное научное общество США всерьез обсуждало вопрос об исключении материалов по нечетким множествам из институтских учебников.
Итак, что же это за наука, которую одни считают ключом к компьютерам будущего, а другие - авантюрой и спекуляцией ? В основе нечеткой логики лежит теория нечетких множеств, изложенная в серии работ Заде в 1965-1973 годах /1/. В этих работах рассматриваются элементы множеств, для которых функция принадлежности представляет собой не жесткий порог (принадлежит/не принадлежит), а плавную сигмоиду (часто упрощаемую ломаной линией), пробегающую все значения от нуля до единицы. Кстати, некоторые ученые полагают, что само название (что означает <нечеткий>, <размытый>, <пушистый>) применительно к теории Заде является не совсем адекватным и излишне рекламным и предлагают заменить его на более точное - <непрерывная логика>.
Надо сказать, что понятие нечеткого множества вполне согласуется с нашими интуитивными представлениями об окружающем мире. Большая часть используемых нами понятий по своей природе нечетки и размыты и попытка загнать их в шоры двоичной логики приводит к недопустимым искажениям. Попробуйте, например, построить пороговую функцию принадлежности для множеств <взрослый>, <популярный>, <качественный>, <быстрый> и т.д. ! А в рамках теории нечетких множеств эта задача не вызывает никаких затруднений. Возьмем, например, понятие <взрослый> и попробуем построить функцию принадлежности человека ко множеству взрослых людей. По оси абсцисс откладывается возраст, по оси ординат - мера принадлежности множеству <взрослый>. Очевидно, что до определенного значения возраста (скажем, 15 лет) человек явно <не взрослый> - и значение функции принадлежности будет равно нулю, а после некоторого возраста (например, 30 лет) - очевидно <взрослый>, и значение функции равно единице. Соединим полученные горизонтальные отрезки наклонной линией - и функция, описывающая понятие <взрослый>, готова. Теперь вы можете использовать это понятие (не заботясь более о его нечеткой природе) в работе с базами данных, экспертными системами и электронными таблицами, т.е. там, где ранее ни о какой неточности не могло быть и речи.